Top.Mail.Ru
Preview

Vestnik Universiteta

Advanced search

COMPUTER MODELING OF TAXATION

https://doi.org/10.26425/1816-4277-2018-12-128-135

Abstract

One of the variants of the mathematical model of a single-product enterprise with taxation, which takes into account tax evasion when increasing the tax burden has been considered in the article. The function of profit of the enterprise before the taxation, function of net profit, fiscal function, function of profitability and some other functions, the argument of which is the average tax rate, have been constructed. The constructed model adequately reflects the mechanisms that affect both the production activity of the economic system and the change in state income from taxation. According to model cal-culations, it has shown in particular that the fiscal function of the enterprise can have a maximum point (Laffer point).

About the Authors

V. Lebedev
Институт проблем рынка Российской академии наук
Russian Federation


K. Lebedev
Научно-исследовательский институт - Республиканский исследовательский научно-консультационный центр экспертизы
Russian Federation


T. Tyupikova
Объединенный институт ядерных исследований
Russian Federation


References

1. Ananiashvili Yu. Sh., Papava V.G. Nalogi i makroekonomicheskoe ravnovesie: laffero-keynsianskii sintez [Taxes and macroeconomic equilibrium: the Laffer-Keynesian synthesis]. Stockholm: CA & CC Press, 2010, 142 p.

2. Antipov V. I. Kompyuternoye modelirovaniye vliyaniya gipoteticheskoi nalogovoi reformy na dinamiku VVP [Computer simulation GDP dynamics at different options for tax reform]. Vestnik Universiteta (Gosudarstvennyi universitet upravleniya), 2018, I. 1, pp. 5-13.

3. Balatskii. E. V. Tochki Laffera i ikh kolichestvennaya otsenka [Laffer points and their quantitative estimation]. Mirovaya ekonomika i mezhdunarodnyye otnosheniya, Moscow, 1997, I 12, pp. 85-94.

4. Balatskii E. V. Otsenka vliyaniya fiskalnykh instrumentov na ekonomicheskii rost [Assessment of influence fiscal tools on economic growth]. Problemy prognozirovaniya, 2004, I. 4, рр. 124-135.

5. Vvedeniye v ekonomiko-matematicheskiye modeli nalogooblozheniya [Introduction to economic and mathematical models of taxation: textbook]. Pod red. D. G. Chernika. M: Finansy i statistika, 2000, 256 p.

6. Gusakov S. V., Zhak S.V. Optimalnyye ravnovesnyye tseny i tochka Laffera [Optimal equilibrium prices and Laffer point]. Ekonomika i matematicheskiye metody, 1995, V. 31, I. 4, pp. 346-358.

7. Evstigneyev E. N. Nalogi i nalogooblozheniye: Uchebnoye posobiye. 6-e izd. [Taxes and taxation: textbook]. SPb.: Piter, 2009. 320 p.

8. Movshovich S. M., Sokolovskiy L. E. Vypusk, nalogi i krivaya Laffera [Output, taxes and the Laffer curver]. Ekonomika i matematicheskiye metody, 1994, I. 30, V. 3, pp. 139-159.

9. Sokolovskii L. E. Podokhodnyi nalog i ekonomicheskoye povedeniye [Income tax and economic behaviour]. Ekonomika i matematicheskiye metody, 1989, V. 25, I. 4, pp. 623-632.

10. Titov V. V., Zhigulsky G. V. Vliyaniye realizatsii effektivnykh novovvedenii na nalogovuyu nagruzku promyshlennogo predpriyatiya [Effect of implementation of effective innovation on tax burden of enterprise]. Vestnik NGUEU, 2015, I. 1, pp. 272-281.

11. Borsi I., Primicerio M. Mathematical models for social and economic dynamics and for tax evasion: a summary of recent results // Vietnam Journal of Mathematical Applications, 2014, V. 12, I. 2. Available at: http://web.math.unifi.it/users/primicer/viet%20nam.pdf (accessed 15.11.2018).

12. Cremer Helmuth and Firouz Gahvari. Tax evasion and optimal commodity taxation. Journal of Public Economics, 1993, I. 50, pp. 261-275.

13. Laffer A. The Laffer curve: Past, Present and Future. Available at: https://www.heritage.org/taxes/report/the-laffer-curve-pastpresent-and-future/ (accessed 15.11.2018).

14. Trabandt M., Uhlig H. The Laffer Curve Revisited. Journal of Monetary Economics, 2011, V. 58, pp. 305-327.


Review

For citations:


Lebedev V., Lebedev K., Tyupikova T. COMPUTER MODELING OF TAXATION. Vestnik Universiteta. 2018;(12):128-135. (In Russ.) https://doi.org/10.26425/1816-4277-2018-12-128-135

Views: 485


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-4277 (Print)
ISSN 2686-8415 (Online)