Top.Mail.Ru
Preview

Vestnik Universiteta

Advanced search

OPTIMAL CONTROL OF INVESTMENTS AROUND COURNOT POINT

https://doi.org/10.26425/1816-4277-2018-8-99-105

Abstract

Hree variants of the dynamic model of a duopoly are considered. Here’s one of the stationary points is the Cournot point. We study the movement around these points and the optimal investment control in a linear approximation. The equations of dynamics of variables for equilibrium, developing and crisis markets in a linear approximation are obtained. A quasi-optimal Pareto maximization strategy for the vector prot criterion, using a linear convolution of the criteria along with the linearization of the dierential dynamics equations in the vicinity of the stationary points, is proposed.

About the Author

Y. Aganin
Государственный университет управления
Russian Federation


References

1. Aganin Y. I. Vlijanie fondovoorujennosti na ustoichivost dvijeniya v dinamicheskoi modeli duopolii [Kapital-Labor Ratio and Stability of trajectory in a dynamic models of duopoly] // Vestnik Universiteta [Vestnik universiteta], 2013, I. 16, p. 120-126.

2. Aganin Y. I. Optimalnoe upravlenie investiziyami v dinamicheskih modelyah duopolii [Optimal Control of investments in a dynamic models of duopoly]. Vestnik Universiteta [Vestnik universiteta], 2017, I. 7-8, p. 146-152.

3. Lebedev V. V., Lebedev K. V. Matematicheskoe modelirovanie nestazionarnih ekonomicheskih prozessov [Mathematikal modeling of non-stationary economic process]. М.: ООО «Test», pp. 2011-336.

4. Alpha C. Chiang. Fundamental methods of mathematical economics. 2d ed. McGraw Hill Book Company, New York, 1974. 784 p.

5. Shone R. Economic Dynamics. Phase Diagrams and their Economic Applications. 2d ed. Cambridge University Press 2002. 708 p.


Review

For citations:


Aganin Y. OPTIMAL CONTROL OF INVESTMENTS AROUND COURNOT POINT. Vestnik Universiteta. 2018;(8):99-105. (In Russ.) https://doi.org/10.26425/1816-4277-2018-8-99-105

Views: 481


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-4277 (Print)
ISSN 2686-8415 (Online)